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Capacity Optimization of MIMO Links with
Interference

Peng Wang∗, John Matyjas† and Michael Medley†
†Air Force Research Lab, Rome, NY

Abstract—The capacity optimization problem of MIMO links
with interference has attracted an increasing interest. Due to
the nonconvexity of the capacity problem, only suboptimal
solutions can be found. In the previous works, a Gradient
Projection (GP) algorithm [1] and a Quasi-Newton (QN)
method [2] were proposed to provide suboptimal solutions
subject to the constant power constraint.

In this paper, we derive the capacity for MIMO links
suffered from cochannel interference where each MIMO link is
decomposed via SVD. Then, each eigenchannel of MIMO link
is represented by a set of logical links with a set of discrete
data rates and discrete powers. An Integer Programming based
algorithm (named as IP) is presented to solve the capacity
optimization problem. The solution specifies the set of logical
links that can transmit simultaneously.

Numerical results show that GP and QN methods achieve
better performance than IP method for the case of weak
interference because of the convexity of the optimization
problem when INR is sufficiently small. In the case of strong
interference, IP method achieves better performance than GP
and QN methods, which means that transmitting one link at a
time is better than transmitting all links simultaneously with
full power. In other words, scheduling links to transmit is more
efficient for the case of strong interference.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems have
shown great promise in providing high spectral efficiency
for single user wireless link without interference [3], [4].
There has also much work on the MIMO-based cellular
networks, which include MIMO multiple access (MIMO-
MAC) [5], [6] and MIMO broadcast systems [7], [8]. Both
systems have one common end of the communication link –
either the transmitter of MIMO-BS or the receiver of MIMO-
MAC. There has been great interest in extending the MIMO
communication to the multi-user systems with interference.
The transmission scheme of each user depends on that of
other users since the interferences at each user depend on
all the transmit covariance matrices in the network.

We consider a scenario of MIMO system where the
nodes aim to maximize the total system capacity rather than
the individual capacity. It is well known that total system
capacity problem appeared in the MIMO-based ad hoc
network is a non-convex programming problem, and only
suboptimal solution can be found. A Gradient Projection
(GP) algorithm [1] and a Quasi-Newton (QN) method [2]
were proposed to provide suboptimal solutions subject to
the constant power constraint. However, there exist some

*Visiting scientist under a National Research Council Research Associ-
ateship Award at the Air Force Research Laboratory.

special cases where the optimal solutions can be achieved.
With the assumption of constant power constraint at each
node, Ye and Blum [1] show that the total system capacity
is a convex function of links’ covariance matrices when
the interferences from other links are sufficiently small, and
hence the global optimal can be achieved. They also show
that the total system capacity can be maximized by enforcing
all users to perform beamforming along a certain direction
when the interferences from other links are sufficiently large.

In this paper, we derive the capacity for MIMO links
suffered from cochannel interference where each MIMO
link is decomposed via SVD. Then, we propose an Integer
Programming (IP) method to study the total system capacity
problem for the MIMO system with interference. Both trans-
mitters and receivers are assumed to have perfect knowledge
of channel state information (CSI). Each MIMO link is
decomposed into parallel independent eigenchannel. Then,
each eigenchannel is represented by a set of logical links,
and each logical link is determined by different discrete
powers and discrete data rates. Also, the transmitters of each
MIMO link are subject to the total power constraint. The
solution specifies the set of logical links that can transmit
simultaneously.

The remainder of this work is organized as follows.
Section II briefly introduces some related work. In Section
III, notation and problem definition are given. The theoretical
capacity and an integer programming based algorithm to
maximize the total system capacity are presented. Then,
Section IV shows the results from numerical experiments.
Finally, concluding remarks are given in Section V.

The notations in this paper are as follows. The boldface
denotes matrices and vectors. For a matrix A, A† denotes
the conjugate-transpose. |A| denotes the determinant, and
Tr(A) denotes the trace of a square matrix. Aº0 means
that A is a positive semi-definite matrix. A is a Hermitian
matrix if A = A†. I denotes the identity matrix with
the appropriate dimension from the context. E[·] denotes
the statistical expectation. C(x × y) denotes the complex
space of x × y matrix. min(x, y) and max(x, y) denotes
the minimum and the maximum of two real numbers x and
y, respectively.

II. RELATED WORK

There is increasing interest in the MIMO-based ad-hoc
network. In [9], Blum investigates the MIMO capacity with
interference where single-user detection is assumed at the
receiver. Without CSI at the transmitter, Blum shows that the
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optimum is either the optimum interference-free approach,
which puts equal power into each antenna, or a singular
mode, which puts all powers into a single antenna, if the
interference is either sufficiently weak or sufficiently strong.

In [1], Ye and Blum study the asymptotic behavior of the
system mutual information and propose a Gradient Projec-
tion (GP) algorithm to maximize the total system capacity
subject to the constant power constraint. In [2], a Quasi-
Newton (QN) method is proposed to solve the capacity
problem by approximating the inverse of the Hessian matrix
instead of computing the real one. QN method can achieve
the super linear convergence and reduce the computation
complexity. However, only the suboptimal solutions can be
found due to the non-convex nature of the optimization prob-
lem. Furthermore, the constant power constraint reduces the
achievable maximum system capacity in the case of strong
interference. In [10], Chen and Gains study the asymp-
totic spectral efficiency of K simultaneously communicating
transmiter-receiver pairs. Without CSI at the transmitters,
the asymptotic network spectral efficiency is limited by nr
nats/s/Hz, while with CSI at the transmitters, the asymptotic
network spectral efficiency is at least nt + nr + 2

√
nt + nr

nats/s/Hz.

III. SYSTEM MODEL AND IP ALGORITHM

A. MIMO Link with Interferences
In this paper, we consider a MIMO interference system

with L links where each node is equipped with nt trans-
mit antennas and nr receive antennas. Suppose all MIMO
nodes communicate in the same channel, and cochannel
interference is presented when more than one link transmit
simultaneously. We use Hi,j ∈ C(nr ×nt) to represent the
channel gain matrix from the transmit antennas of link j to
the receive antennas of link i. Assume the CSI (or Hi,i)
corresponding to link i is available at both the transmitter
and the receiver of link i.

The complex base-band signal vector received by the
receiver node of link i is given by

yi =
√
ρiHi,ixi +

LX
j=1,j 6=i

√
ρi,jHi,jxj + ni,

where xi represents the normalized transmitted signal of link
i, ρi denotes the signal-to-noise ratio (SNR) of link i, ρi,j
denotes the interference-to-noise ratio (INR) of link i due
to the interference from link j, and ni is the noise vector.
The entries of Hi,j and ni are independent and identically
distributed complex Gaussian random variables with zero
mean and unit variance. For simplicity, we assume all of the
interference signals xj are unknown to link i.

Let Qi be the covariance matrix for the transmit signal
vector xi, and defined as

Qi = E[xix
†
i ].

T r(Qi) specifies the transmit powers of transmit antennas
of link i, and we have Qiº0 and Tr(Qi) ≤ 1 where 1 rep-

resents the normalized maximum power. The interference-
plus-noise of link i is

PL
j=1,j 6=i

√
ρi,jHi,jxj + ni, which

is Gaussian distributed with covariance matrix Ri = I +PL
j=1,j 6=i ρi,jHi,jQjH

†
i,j where I = E(nin

†
i ). The ergodic

capacity [4] of link i can be written as

Ci = E
³
log2

¯̄̄
I+ ρiHi,iQiH

†
i,iR

−1
i

¯̄̄´
where the expectation is taken over the distribution of H.

The optimization problem to maximize the system capac-
ity can be defined as

max
LX
i=1

wiCi (1a)

subject to Tr(Qi) ≤ 1
Qiº0.

where wi are pre-assigned weights. Due to the nonconvexity
of this problem, only a suboptimal solution can be found.

B. Capacity of MIMO Link via SVD

Consider the MIMO interference system with a rich scat-
tering environment. We use the fact that a MIMO channel
can be decomposed into a number of parallel independent
channels. By multiplexing the independent data onto these
independent channels, we can increase the data rate signifi-
cantly.

Singular value decomposition (SVD) can be used to obtain
the independent channels for a MIMO link. Consider a
MIMO link with nr × nt channel gain matrix H that is
known to both the transmitter and the receiver. The channel
gain matrix H is decomposed into

H = UΛV†,

where the nr × nr matrix U and the nt × nt matrix V are
unitary matrices, and the nr × nt matrix Λ is a diagonal
matrix of singular values {σi} of H. Due to considering a
rich scattering environment, the matrix H is full rank and
Rank(H) =M = min(nr, nt).

The parallel decomposition of a MIMO link is imple-
mented by applying transmit precoding at the transmitter and
receiver shaping at the receiver. It is worth pointing out that
these parallel channels are independent and do not interfere
with each other, but subject to the total power constraint.

The channel gain matrix H̃ij from the transmitters of
eigenchannels of link j to the receivers of eigenchannels
of link i (i 6= j) shown in Fig 1 can be written as

H̃i,j = U
†
iHi,jVj , (2)

where Ui and Vj are from the singular value decomposition
of the channel gain matrices Hi,i and Hj,j . H̃i,j defined in
(2) is verified in the proof of Theorem 1. Then, H̃ l,k

i,j denotes
the channel gain from the transmitter of the kth eigenchannel
of link j to the receiver of the lth eigenchannel of link i.

Theorem 1: By applying SVD decomposition for L links
in the MIMO system with interference, the ergodic capacity

2
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Fig. 1. The channel gain matrix H̃ij from the transmitters of eigenchannels
of link j to the receivers of eigenchannels of link i

of link i can be written as

Ci = E

Ã
log2

¯̄̄̄
¯I+ ρiΛiQix̃Λ

†
i

I+
PL

j=1,j 6=i ρi,jH̃i,jQjx̃H̃
†
i,j

¯̄̄̄
¯
!

whereΛi is a diagonal matrix of singular values ofHi,i,Qix̃

is the covariance matrix of transit signal x̃ before precoding
which is a diagonal matrix diag[Pi1 ... PiM ] where Pik is
the transmit power at the kth eigenchannel of link i, and the
expectation is taken over the distribution of H. Furthermore,
since the matrix Qjx̃ of link j is a diagonal matrix diag[Pj1
... PjM ]. Hence,

Ci =

E

⎛⎜⎜⎝log2
¯̄̄̄
¯̄̄̄I+ ρiΛiQix̃Λ

†
i

I+
PL

j=1,
j 6=i

ρi,j
PM

k=1 Pjk

³
H̃i,j

´
k

³
H̃i,j

´†
k

¯̄̄̄
¯̄̄̄
⎞⎟⎟⎠

where
³
H̃i,j

´
k

is column k of H̃i,j .
The proof can be found in appendix. It is easy to verify

that Ri = I+
PL

j=1,j 6=i ρi,j
PM

k=1 Pjk

³
H̃i,j

´
k

³
H̃i,j

´†
k

is

a Hermitian matrix by checking Ri = R
†
i . By applying the

fact that the Hermitian matrix AA† is positive semi-definite
for any matrix A, we can show that Ri is a positive definite
Hermitian matrix.

The entries of H̃i,j are i.i.d complex Gaussian random
variables with zero mean and unit variance because the
unitary matrices U†

i and Vj do not change the distribution
of entries of Hi,j . Hence, the non-diagonal elements of³
H̃i,j

´
k

³
H̃i,j

´†
k

have zero mean and the diagonal ele-
ments have unit mean. For large L and M , the matrix
C =

PL
j=1,j 6=i ρi,j

PM
k=1 Pjk

³
H̃i,j

´
k

³
H̃i,j

´†
k

can be ap-
proximated by a diagonal matrix with the diagonal elements

of C.
The aggregate interference-plus-noise at the receiver of

the lth eigenchannel of link i from the eigenchannels of
other links has the covariance ζil which can be written as

ζil ≈ 1 +
LX

j=1,j 6=i
ρij

MX
k=1

PjkH̃
l,k
i,j

³
H̃ l,k
i,j

´†
.

Then, the approximately ergodic capacity of link i can be
written as

Ci ≈ E

Ã
MX
l=1

log2

µ
1 +

ρiσ
2
il
Pil

ζil

¶!
(3)

where the expectation is taken over the distribution ofH, σil
is the singular value of the lth eigenchannel of link i, and
Pil is the transmit power at the lth eigenchannel of link i.

In summary, the channel covariance coefficient Dxm,yn

from the transmitter of the nth eigenchannel of link y to the
receiver of the mth eigenchannel of link x can be represented
as

Dxm,yn =

⎧⎪⎨⎪⎩
σ2xm if x = y and m = n
0 if x = y and m 6= n

H̃m,n
x,y

³
H̃m,n
x,y

´†
if x 6= y.

C. The Set of Discrete Data Rates and Powers
Suppose that there are K modulation/coding schemes and

S transmit powers available for the mth eigenchannel of
link x, then associated with each MIMO link x is the set
of logical links xm,k,s with 1 ≤ m ≤ M , 1 ≤ k ≤ K and
1 ≤ s ≤ S. We define an assignment v as a set of logical
links that can transmit simultaneously. In other words, the
assignment specifies which links are transmitting, which
eigenchannels are active, their bit-rates, and their transmit
powers. Specifically, an assignment v ∈ {0, 1}L×M×K×S ,
where vxm,k,s

= 1 implies that the MIMO link x is
transmitting at the mth eigenchannel, the kth bit-rate and
the sth normalized power.

The set of data rates are selected from the noninterference
case. The transmitters of each user always assume that there
is no interference from other users. For a particular SNR =
ρx, the mth eigenchannel of link x can support a maximum
data rate up to

Cxm = log2
¡
1 + ρxσ

2
xmPmax

¢
,

where Pmax = 1 is the normalized maximum power.
However, there exists interference when there are more
than one link transmitting simultaneously, and the data rate
Cxmcannot be achieved.

In order to accommodate the interference from other users,
let us define β as the buffer size to reduce the sensitivity to
interference. Therefore, the maximum data rate of the mth

eigenchannel of link x is

Cmaxxm = log2

µ
1 +

ρxσ
2
xmPmax

β

¶
,

where β = 2dB is used in this work.
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Once the maximum data rate of eigenchannel link xm is
obtained, a wide range of possible approaches are available
for selecting the set of data rates. The obvious option is to
select K linearly separated data rates up to Cmaxxm denoted by
DR=[Cmaxxm /K ... Cmaxxm ]. Then, the corresponding SINR
threshold to achieve the kth data rate can be represented as

SINRth
xm,k

= 2k×C
max
xm

/K − 1.
In order to achieve the desired data rate, the SINR at
the receiver of the eigenchannel must be no less than the
corresponding SINR threshold.

Similarly, the set of powers can be selected as S linearly
separated transmit powers denoted by [1/S ... 1]. The num-
ber of logical link for each MIMO link is up to M×K×S,
and the total number of logical links in the ad hoc network
is up to L×M ×K ×S which determines the computation
complexity of the optimization problem defined in (5).

D. Integer Programming Based Algorithm
Let Rxm,k,s

be the data rate over the logical link xm,k,s,
and SINRth

xm,k
denotes the SINR threshold required to

achieve the kth data rate over the mth eigenchannel of
link x. Note that SINRth

xm,k
depends on the link x. The

aggregate interference-plus-noise at the receiver of the mth

eigenchannel of link x has the covariance ζxm which can be
written as

ζxm =
LX

y=1,y 6=x
ρx,y

MX
n=1

Dxm,yn

KX
t=1

SX
q=1

Pyn,t,qvyn,t,q + 1,

where Pyn,t,q is the transmit power of logical link yn,t,q.
The logical link xm,k,s to be active must satisfy

ρxDxm,xmPxm,k,s

ζxm
> SINRth

xm,k
,

which is equivalent to

ρxDxm,xmPxm,k,s − SINRth
xm,k

ζxm >∞× ¡vxm,k,s − 1
¢
.

(4)
Since, when vxm,k,s

= 0, (4) is always true (assuming that
∞ × 0 = 0). Of course, in practice, ∞ is replaced with
some large number. While further tuning is possible, we have
found that Problem (1) can be approximated by solving the
following integer programming problem.

max
v

LX
x=1

wx

MX
m=1

KX
k=1

SX
s=1

Rxm,k,s
vxm,k,s

(5a)

subject to
ρxDxm,xmPxm,k,s

− SINRth
xm,k

ζxm > Γxm,k,s

¡
vxm,k,s

− 1¢
for each logical link xm,k,s (5b)

MX
m=1

KX
k=1

SX
s=1

Pxm,k,svxm,k,s ≤ 1 for each link x (5c)

KX
k=1

SX
s=1

vxm,k,s
≤ 1 for each eigenchannel of link x (5d)

vxm,k,s
∈ {0, 1} ,
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Fig. 2. Capacity per User for nt = nr = 2 and L = 2.

where

Γxm,k,s
= SINRth

xm,k
×⎛⎝ LX

y=1,y 6=x
ρx,y

MX
n=1

Dxm,yn

KX
t=1

SX
q=1

Pyn,t,q + 1

⎞⎠ .

Constraint (5c) shows that the total power at the transmitters
of link x must be no more than the normalized power 1.
Constraint (5d) enforces that only one logical link can be
active for each eigenchannel of link x.

IV. NUMERICAL EXPERIMENTS

In order to compare the performance of different ap-
proaches, i.e., GP, QN and the proposed IP method, a
large number of simulations are performed. The results are
averaged on high number of randomly generated channel
matrices. For simplicity, we always use nt = nr = 2, and
the number of data rates and powers for each eigenchannel
are K = 8 and S = 4, respectively. CPLEX v10 is used to
solve the integer programming problem.

A. Capacity Per User
In the symmetric case, SNR and INR are the same for

all users where ρi = ρ and ρi,j = η for all i and j.
As shown in [1], [2], the ergodic mutual information is
relatively independent to the different initial conditions. The
GP and QN methods converge in most cases, and the scare
nonconvergence cases are excluded in the simulations.

Figs (2-3) show the ergodic mutual information per user
versus INR(η) for different SNR values for two and five
users, respectively. Capacity per user decreases with the
increase of INR, the decrease of SNR, and the increase of
the number of users.

Not surprisingly, GP and QN methods achieve better
performance than IP method when INR is small. [1] has
shown that the ergodic mutual information in the network
is a convex function of links’ covariance matrices when
INR is sufficiently small. Hence, both GP and QN methods
can achieve the optimal performance. However, IP method
achieves suboptimal solution due to several approximations

4
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Fig. 3. Capacity per User for nt = nr = 2 and L = 5.
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Fig. 4. Average number of active links for nt = nr = 2 and L = 5.

such as the discrete set of data rates, discrete powers, and
the interference margin β. As shown in the Figs, the results
of IP method are still very close to the optimal solution.

In the case where INR is large, IP method achieves better
performance than GP and QN methods. The reason is that
GP and QN methods solve the optimization problem with
the constraint Tr(Q) = 1. In other word, all links transmit
with full power, which is obviously far from optimal for the
strong interference case. In fact, the optimization problem
should be solved with the constraint Tr(Q) ≤ 1, which
means scheduling is necessary and some links are selected
to transmit when the INR is large.

B. Average Number of Active Links
Figs 4 shows the average number of active links obtained

by IP method for five users. Fixing the value of SNR, the
average number of active links decreases with the increase
of INR. On the other hand, fixing the value of INR, the
average number of active links increases with the increase
of SNR except the low INR and high INR cases where all
links transmit or only one link is selected to transmit.

When INR is sufficiently small, all users transmit simul-
taneously, which can be verified by the case INR=−5dB.
When INR is large such as INR=20dB, the number of active
users is close to one. Therefore, transmitting one link at a
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Fig. 5. Average power per active link for nt = nr = 2 and L = 5.
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Fig. 6. Average power per active eigenchannel for nt = nr = 2 and
L = 5.

time is better than transmitting all links simultaneously with
full power for high INR case. Generally speaking, it is better
to select links to transmit when INR is large.

C. Average Power of Active Links
Figs 5 shows the average power per active link obtained by

IP method for five users. As we know, GP and QN methods
assume that all links are active and transmit with full power.
As shown in Figs (4-5) for IP method, all links transmit
with full power for the weak interference case, and only
one link is selected to transmit with full power for the strong
interference.

The scenarios between these two extreme cases are com-
plicated. As we can see from Fig 5, the average power per
active link is lower for larger SNR case. The reason is that
more links are selected to transmit, and it is necessary to
decrease the transmit power in some links to reduce the
interference to other active links, resulting in lower average
power per active link.

D. Average Power of Active Eigenchannel Links
Fig 6 shows the average power per active eigenchannel

obtained by IP method for five users. The transmit power
per eigenchannel is close to 0.5 for weak interference case
(SNR = 20dB and INR = −5dB), which matches the
result in [9]. Whereas, the transmission power per eigen-
channel is also close to 0.5 for strong interference case
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(INR = 20dB), which is not in conflict with the result in
[9]. The reason is that only single link is selected to transmit
for strong interference, which indicates that the active link
transmits without interference.

V. CONCLUSION

In this paper, we study the capacity optimization problem
of MIMO links with interference. Due to the nonconvexity
of the capacity problem, some suboptimal solutions have
been proposed in the previous works, such as a Gradient
Projection method [1] and a Quasi-Newton method [2]. Both
of these methods assume Tr(Q) = 1, implying always
transmitting with full power.

We derive the capacity for MIMO links suffered from
cochannel interference where each MIMO link is decom-
posed via SVD, and present an Integer Programming based
algorithm to solve the capacity optimization problem. Com-
pared with GP and QN methods, IP method achieves lower
capacity for the case of weak interference and higher ca-
pacity for the case of strong interference. In the case of
weak interference, GP and QN methods achieve the optimal
solution due to the convexity of the optimization problem.
In the case of strong interference, transmitting one link at a
time is better than transmitting all links simultaneously with
full power. Generally speaking, scheduling links to transmit
is more efficient for the case of strong interference.

APPENDIX

Proof of Theorem 1: Applying the transmit precoding
at link i, the covariance matrix of the transmit data x can
be written as

Qi = ViQix̃V
†
i ,

where x = Vx̃. Then,

γ =
¯̄̄
I+ ρiHi,iQiH

†
i,iR

−1
i

¯̄̄
=

¯̄̄
I+ ρi(UiΛiV

†
i )(ViQix̃V

†
i )(ViΛ

†
iU

†
i )R

−1
i

¯̄̄
=

¯̄̄
I+ ρiUiΛiQix̃Λ

†
iU

†
iR
−1
i

¯̄̄
.

Applying the fact that

|Im +AB| = |In +BA|
where A is a m× n matrix and B is a n×m matrix.

γ =
¯̄̄
I+ ρiΛiQix̃Λ

†
iU

†
iR
−1
i Ui

¯̄̄
=

¯̄̄
I+ ρiΛiQix̃Λ

†
i (U

†
iRiUi)

−1
¯̄̄

=

¯̄̄̄
¯I+ ρiΛiQix̃Λ

†
i

U†
i (I+

PL
j=1,j 6=i ρi,jHi,jQjH

†
i,j)Ui

¯̄̄̄
¯ .

Because of the precoding of link j, we get

γ =

¯̄̄̄
¯̄̄I+ ρiΛiQix̃Λ

†
i

I+
PL

j=1,
j 6=i

ρi,j(U
†
iHi,jVj)Qjx̃(U

†
iHi,jVj)†

¯̄̄̄
¯̄̄ .

The channel gain matrix H̃i,j defined in (2) is verified and
H̃i,j = U

†
iHi,jVj . Then,

γ =

¯̄̄̄
¯I+ ρiΛiQix̃Λ

†
i

I+
PL

j=1,j 6=i ρi,jH̃i,jQjx̃H̃
†
i,j

¯̄̄̄
¯ .

We know that the matrix Qjx̃ of link j is a diagonal matrix
diag[Pj1 ... PjM ] where Pjk is the transmit power at the kth
eigenchannel of link j. Hence,

γ =

¯̄̄̄
¯̄̄I+ ρiΛiQix̃Λ

†
i

I+
PL

j=1,j 6=i ρi,j
PM

k=1 Pjk

³
H̃i,j

´
k

³
H̃i,j

´†
k

¯̄̄̄
¯̄̄ ,

where
³
H̃i,j

´
k

is column k of H̃i,j . Therefore, the ergodic
capacity of link i can be written as

Ci = E (log2 γ)

where the expectation is taken over the distribution of H.
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